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Two-Particle Spectrum of the Generator for Stochastic
Model of Planar Rotators at High Temperatures

E. A. Zhizhina1

We study two-particle spectrum branches of the generator in the stochastic
model of planar rotators, using the construction of a special basis in two-par-
ticle invariant subspaces. We prove that the branches of the spectrum are in a
small neighborhood of the point 2. We prove the existence of two bound states
in addition to the continuous part of the spectrum in the one-dimensional case.

1. INTRODUCTION AND THE MAIN RESULTS

The study of spectral properties of the generator in the stochastic model
of planar rotators commenced with the paper of R. A. Minlos and
Yu. G. Kondratiev. (1)The authors have suggested a new method for
spectral analysis of such operators, similar in some sense to the cluster
expansion method. In ref. I the authors constructed one-particle invariant
subspaces of the generator and found the spectrum of the generator on
these subspaces. This paper is a direct continuation of ref. 1: we
investigate the next two-particle invariant subspaces of the generator and
corresponding two-particle branches of the spectrum. In our study we use
both the methods of ref. 1, and the spectral analysis of the cluster
operators.(2)
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where < • )p,x is a conditional average with respect to the distribution P of
the process x(t) with initial condition x(0) = x.

The operator H belongs to the family of so-called infinite-particle
operators. Separation of one-particle, two-particle,... etc. branches of the
spectrum is the powerful method for the spectral analysis of such operators
(see ref. 2). We begin with the case B = 0. It is easy to see that the spectrum
of the "non-perturbed" operator (with B = 0) consists of only eigenvalues
0, 1, 2,.... The eigenvalue 0 has multiplicity one, while the other eigenvalues
1, 2,... have infinite multiplicity. So we expect that when we "switch on the
perturbation" (B=0, B is small), the spectrum of H will be spreaded in
small neighborhoods of the points 1, 2, 3,..., which had infinite multiplicity.
Of course, the spectrum branches can overlap beginning with some number
(depending on B).

The results of this paper supplement the similar ones from ref. 1, and
together they give the explicit information about two lower branches of the
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We define the generator H of the Langevin dynamics for stochastic
model of planar rotators as a closure of the following differential operator

where ,H = L2(Q, duB) , Q = T Z d (T is the one-dimensional torus), duB is
the limit Gibbs measure on Q in the planar rotators model with formal
Hamiltonian

with invariant measure UB. For any f e H:

generates a reversible Markov process on Q

B (inverse temperature) is small.
In ref. 3 it was proved that H is the selfadjoint operator in H, and the

stochastic semigroup



respectively. The function m(A) is an analytic function in a complex
neighborhood W of the torus Td and
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spectrum: these branches are isolated (the one-particle branches are in a
small neighborhood of the point 1, the two-particle ones are in a small
neighborhood of the point 2) and separated from the rest of the spectrum.
In addition the one-particle branches have only absolute continuous
component, while the two-particle branches have also absolute continuous
component and possibly a finite set of eigenvalues (discrete component).

The result relating to the leading one-particle branches of the spectrum
is the following:(1)

Theorem 1 (Minlos, Kondratiev). For small enough B there
exist two orthogonal subspaces H ^ - < C H which are invariant with respect
to the operator H and the unitary group of the space translations Uj,

j e Zd. The unitary involution J: H -> .H

transfers the subspaces H ,* and the operators

each of them to other:

The spectra of the operators H ,* and U* = EUj-H1 ̂ ± are the same as the
ranges of the functions

The spectrum of H in the orthogonal complement

meets the following estimate:

where C1, C2 are constants.



We study here two-particle invariant subspaces of the operator H. To
do this we are constructing below some appropriate basis. The idea of such
basis was proposed by R. A. Minlos in the paper.(4) The operator H in this
basis is appears to be similar to a cluster operator. Hence we can use the
methods for the spectral analysis of the cluster operators to obtain the
information about next two-particle branches of the spectrum for the
operator H.

The main result is the following.

Theorem 2. For small enough ft there exist three orthogonal sub-
spaces H2, H 2

C - H which are invariant with respect to the
operator H and the unitary group of the space translations {UJ, j e Zd}.
The unitary involution (Jf)(x) = f( — x) transfers the subspaces :H+ and
the operators

each of them to other: JH = H2
+, JH2 = H2

+ , so the spectra of H2
+

and H- are the same.
The spectra of the operators H2 and H0 = H|H2 have an absolute

continuous component (the Lebesgue branch of the spectrum) and possibly
a finite number of eigenvalues ("energy" of corresponding bound states).
The singular spectrum is empty.

The Lebesgue parts of the spectra for the operators H2 and H2 are
the same as the range of the function
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where m(L) is the function defined in the Theorem 1.
In the one-dimensional case ( d = 1 ) each of the operators H2 and H0

has an unique bound state with different eigenvalues ("energy").
The spectrum of H in the orthogonal complement

meets the estimate:

where

and C is a constant.



2. THE CONSTRUCTION OF THE TWO-PARTICLE INVARIANT
SUBSPACE

Let M be the set of all multi-indices (integer-value functions with
bounded support):
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From the precise information about the two-particle branches of the
spectrum and the results relative to the asymptotics of correlations decrease
from ref. 9, one can obtain the asymptotics of the correlations

as t-> oo, and functions d are from some family VcH. Here P is defined
above distribution of the process x(t), Up is the invariant measure of the
process, (•, •)H is the scalar product in the Hilbert space 3C. We introduce
a family ¥<^,^f of smooth functions f on an arbitrary finite set of variables
xa1„,,..., aam ( { a 1 , . . . , am} c Zd), such that the Fourier decomposition for f
does not contain the exponents with charge ±1 (see the definition of the
charge below, (5)), but contains at least one of the exponents:

For instance, f = eixa +ixb e ¥ for any a =b. As will be seen from the descrip-
tion of the invariant subspaces H1 and H2, any function f e ¥ has zero pro-
jection on the invariant subspace H1 = H1 © H- and non-zero projection
on the invariant subspace H2. From this fact and also from the 3 reasoning
and results of the paper(9) we obtain

Corollary. Let f e ¥. Then

as t-> oo. Here Kd(f) are constants depending on the function / and the
dimension d, m0 is the minimum of the function m(L) (1) .
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Then the set of functions LM

forms the basis (non-orthogonal) in H = L2(Q, du B ) .
We denote by L c H the space of functions of the form:

with

Under condition (3) the series (2) converges absolutely and uniformly. In
addition the space L is dense in H, and for any f e L:

Let Bn,n' be matrix elements of a bounded operator B in L with respect to
the basis {en(x)}:

Then the norm of the operator B in the space L is defined as

Further we need the following useful lemma.

Lemma 1.(5) Let B be a symmetric operator in 2? such that
B: L -> L, and the restriction B\L is a bounded operator in L. Then B is a
bounded operator in #? with

The proof see in ref. 5.
For any function « e ,M we introduce two notations. Let



be a modulus of n.
Since the stochastic dynamics holds the charge, then the space ,2f

(and L) is decomposed into the direct sum of subspaces of the fixed charge
which are invariant with respect to H:

and

The decomposition (6) implies that

We need next some methods and constructions from the book(2) and
the paper,(1) so we briefly remind them here.

According to the classical scheme of the construction of the invariant
subspaces (see ref. 2), the subspace 3f,+ (and Jf f analogously) is the
closure of the following subspace
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be a charge of n, and

where &r is the linear span of the vectors (en(x) :r(n) = r}, reZ, and we
consider a closure &r in a sense of the norm in the space 3>f. In particular,
we have

with

Here L+ c ^ is the linear span of the vectors {?'**, keZd, } and S + is a
operator



To study two-particle subspaces we have to get more concrete infor-
mation about the spectrum of the generator restricted on the one-particle
subspaces jjff. One can find this information in the lemmas 2-5.

Lemma 2. The spectrum of the operator H1
+ =H\^+ (and //f =

H\jf- is the same as the range of the function

350 Zhizhina

where LJ1 = ifi0L1
+ is the linear span of vectors of the form {en(x)t

r(n) = 1, |«| > 1}. The operator S+ meets the equation

Here the operators H$ : L+ -> L + , H(
0\

]: L >, -» L + etc. correspond to
the following matrix representation for the operator H\^,i under the
decomposition ^ = L j1" © L >,:

In ref. 1 it was proved that the operator S+ meets the bound

with a constant C, where || • || is the norm in the space of bounded
operators !£(L* -» L JJ.

Thus we have (nonorthogonal) basis vectors in the space W:
+ of the

form

where A = 1 + 0(/?2), B = 1 + 0(/?2), C are constants,

Proof. The lemma improves the results of the paper,(1) and we use
here the technique of ref. 1 complemented with some additional estimates.

where er = eix'. In our case Ujhr = hr+j, r,jeZd.

for all A e T*.



As noted above, the one-particle invariant subspace ,'# ,+ has the form (7) ,
and matrix representation (9) implies the following formula for the matrix
elements of the operator H + :

and moreover (H(
0\

}S + )r_s = 0(/?2). We have to get now the representa-
tion for (H(^S + )r_s up to the order O((14). For this purpose we invoke a
lemma from ref. 6.

Lemma 3. For small enough /? the estimate for the matrix elements
of the operator H(

0\
)S+ is the following:

and C, D are constants.

Proof see in ref. 6.

Then (13)-( 15) imply that the matrix elements m(r — s) of the operator
H1

+ have the bound:

where ^U\RU\< 3/2 + £>/f2, C, D are constants.
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We have used here the fact that the operator H1" commutes with the group
of space translations Uj,jeZd, and hence H + is a convolution:

The definition of the operator H\^ (see ( 9 ) ) implies that

with



we obtain the representation (12). Lemma 2 is proved.
In what follows we shall need some sharp estimates on the matrix

elements of the operator S +.

Lemma 5. For any keZd and n e J f with r (n)= 1, \n\>\ we
have
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We also use the following lemma from the paper.(1)

Lemma 4. Let rh(r — s) be matrix elements of Hf in the orthonor-
mal basis {hr, reZd} obtained with help of Gramm matrix from the basis
{hr,reZd} (11):

where

C, D are constants, d{K, supp n} is the length of a minimal connected set of
bonds of the lattice Zd containing the point k and all points of supp n.

Proof. Lemma 5 is a sharpening of the analogous statement from
ref. 1. To prove (18) we have to consider the space of operators
s/= {Q: L+ ->•£>,} with the norm

Then m(r — s) = m(r — s), where the function m(r — s) is defined by the for-
mula (13).

Proof see in ref. 1.

Now from (13)-(15), (17) after Fourier transform



where E is the identity matrix, and \\8\\ < C/J.
The decomposition (19) generates the following matrix representation

for the operator H2 = H \ <f :fi
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The estimates on the norms of all operator from the equation (8) can be
obtained by analogy with the reasoning of ref. 1:

Here kj = kj(d),j = 1, 2, 3 are constants depending only on the dimension d.
Then by applying the contraction maps principle to the equation (8)

from above estimates it follows that S+es/ and |||S + ||| <£>^3/8, D is a
constant. Lemma is proved.

We now pass to the proof of the Theorem 2. The first step is to con-
struct two-particle invariant subspace 34?£ • Our reasoning is similar to the
previous one, when we have isolated the one-particle invariant subspaces.
We denote by L2 the linear span of products {hr • hs, r / .v} of the basis vec-
tors hr,hs,rjt=s, from the one-particle invariant subspace ,7? + , and by
L > 2 the subspace

We consider a basis in L>2 of the following form:

It is clear from estimate (10) that the operator G:^-*J5?2. setting the
transformation of the classical basis in y2 of the form { e n ( x ) , r(n) = 2} to
the basis

has the form



where C is a constant.
Using (20) and (4), Lemmas 6 and 7 can be proved by analogy with

the proof of the similar results from ref. 1 relative to the one-particle
invariant subspaces.
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where H00: L2-> L2, H01: L>2-> L2 etc. We shall find the invariant sub-
space 3F 2 c &2 as the closure of the following subspace

where S2 : L2-* L>2.

Remark. In a similar way we can construct the invariant subspaces
Jffc^.z and J^°2<=S'0O{1}. The first one is a perturbation by the
operator S2 of the linear span of the vectors { h ( ~ ) •h(

s~\ r^s], where
^ r ~ ' > h^^ are the basis vectors of J^f , and the second one is the
analogous perturbation of the linear span of the vectors {h(

r~
} -hs, r^s}.

The decomposition (21) implies that the existence of the invariant sub-
space #f'2 of the form (22) is equivalent to the existence of a solution for
the equation on S2'.

The result is the following.

Lemma 6. For small enough ft there exists a unique solution S2 of
the equation (23) with

where || • || is the norm in the space =S?(L2-> L > 2 ) of linear bounded
operators, C is a constant.

We denote by

where J#2 = ,#?2
r ©Jf 2 © 3tf 2 is the two-particle invariant subspace.

Lemma 7. The spectrum of the operator H\^ has the following
lower bound:



Here a2, D are the same constants as in the Lemma 8.
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3. SPECTRAL ANALYSIS OF THE GENERATOR H ON THE
TWO-PARTICLE INVARIANT SUBSPACES

We proceed now to the spectral analysis of the operator H restricted
on the two-particle invariant subspaces, and first we formulate relevant
lemmas.

Lemma 8. If r^s, then

Here

and

and

with

where d^St suppw) is the length of a minimal connected subgraph containing
the points r, s and all points of the supp w; a2, D are constants.

Proof of Lemma 8 see in Appendix.

Corollary. Under the decompositions (19) and (21) we have



where m(r-r') is the same function as in the formula (13). The representa-
tion (21) implies that the matrix elements of the operator H^ in the basis
{br,s} (31) have the form:
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Lemma 9. The matrix elements of the operator S2: L2 -> L>2 have
the bound:

where

where

are the matrix elements of the operators H00 and H01S2 in the basis
{ h r - h s } respectively. Then from the representations (25), (27) and (32) we
get the formula for the kernel of the operator H^ '•

and hence from the estimates (28), (29) and (30) we have

with constants D and a.

and the operator H% is written in this basis as:

C, a > a 2 are constants.

Proof of Lemma 9 see in Appendix.

Let us consider now the generator H on the two-particle invariant
subspace. Lemma 6 implies that a (non-orthogonal) basis in the subspace
2f 2 has the following form:



Let us recall that we have considered above the case when hr,/ise
,^!+, and M'2 cj^. In a similar manner we can construct the invariant
subspaces M7 c J^_2 and .W° c y0Q{1}.

Since the unitary involution (Jf)(x) = f ( — x ) transfers the subspaces
Jf ^ each of them to other: J3f% = Jf ^, then the spectra of the operators
HZ and //2~ are the same. In addition Theorem 1 and formula (32) imply
that the absolute continuous spectra of the operators H} and H\ are
coinciding, and they are the same as the range of the function

for any h(/.)e L2(T).
The transformation Q is not orthogonal, it can be represented as a

composition of two transformations:

where £ is the identity matrix, ||zJ|| < Cfi, with a constant C. The represen-
tation (35) implies the existence of the transformations G - 1 / 2 , G1/2. Hence

is the orthogonal transformation. From (31) , ( 1 1 ) , (10), (24), (30) it is easy
to show that the Gramm matrix has the form

where G is the Gramm matrix for the basis { b r , s } , and G- 1 / 2 transforms
the basis {br,s} to the orthonormal basis { b r , S } , so

For the further study of the spectrum of the operators H} and H2 in
the one-dimensional case we pass to the Fourier transform:

where LYm(Tx T) is the Hilbert space of symmetric functions f(/.,, A2) =
f(/2, At), /[, /2e r, such that
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the transformation Q = FG 1/2 is reversible and the operators H^ and
H+ = QH + Q~] : Lf -> Ls*m are similar. We use here a lemma from the
book.(7)

Lemma 10. The spectra of similar operators coincide.

Proof see in ref. 7.

Now we proceed to study the spectra of the operators H2 and H°2.
The results of ref. 8 imply that the operator H% has the form

where Kt(A,l, A 2 , / M i , ^ 2 ) is the Fourier transform of the function
K(r, s, r', /); r^s, r'/.v'. The operator H°2 has the analogous representa-
tion, and let K°(^i, A 2 , ^ 1 ( ^ 2 ) be the kernel of its integral part:
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Here

where K ° l ( ^ l , ^ 2 , f i l , f i 2 ) is the Fourier transform of the function
K°(r,s,r',x'); r/.v, r'+s'.



Remark. From the estimates (34) it follows that the functions
K(A,A,/.t) and K°(A, A , / < ) , where A =/M +/2 = /«i + / < 2 > A = ^ ( / , — / 2 ) .
/* = 2~(/"i — ̂ 2)

 are analytic with respect to /I, / , / / e T.

Lemma 11. In the one-dimensional case for small enough fi there
exists a neighborhood Op(n] of the point n (which has order fi] such that
for any A =At + A2e Ofi(n) the operators H^ and //" have the unique
eigen-states with eigenvalue:
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In the other cases we have

Proposition. 1. If |r-.v| = 1 then

Hence in what follows we can assume that r < s.

The operators H2
+ and H°2 have no eigen-states when A e O B ( n ) .

Here A = 1 + O(B2) is the same constant as in the representation (37)
for the function m(L 1 ,L 2 ) .

Proof. Let us consider the operator H2
+ ( the operator H0

2 can be
investigated by a similar way). To study a discrete spectrum of the
operators H2

+ and H0
2 we need both the estimate (34) and a detailed infor-

mation about the structure of the kernels K(r, s, r', s') and K 0 ( r , s , r ' , s ' ) .
We note that the functions K ( r , x , r ' , s ' ) and K 0 ( r , s , r ' , s ' ) are symmetric
with respect to any pair of the variables (r, s) and (r', s') separately:

and respectively



Here C1, C2 are constants.

Proof see in Appendix.

We consider now the operator H2 with respect to new variables
A = A, +12 =,u, + f*2, A = £(/ , — A2). The representation (36) yields that the
operator H2 could be written as:

Hence H2 is a direct integral (with respect to A) of the family of operators

under notations of formulas (37) and (38).
We note that critical points of the function mA(X] are non-degenerate

for any A, and in addition all critical values of mA(A) are simple when
A+T. Then from results of the paper(8) it follows that the operator HA has
no bound states for small enough B and for all A $O(n). Here O(n) is a
small neighborhood of point n.

Let us consider the case A=n. We have:
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2. If |r — s| >2 then for any r', s' the following estimates hold:

acting for every fixed A e T in the spaces Lev < Lev of even function
f A ( l ) e L e v ( T ) such that f r f A ( l ) d l = 0. In doing so the functions mA(L)
and K A ( A , u ) have the form:



C1 is a constant.
Then (45) and the general perturbation theory imply that the operator

Hn has the unique point of the discrete spectrum wa which is in a
B3-neighborhood of the point w ( b ) . Finally, from the analyticity of the func-
tions mA(k) and K A ( A , u ) with respect to A we obtain the statement of
Lemma 11 for all A e OB(n).

Lemma 11 is proved.
Theorem 2 is proved completely.
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where | k n ( B , l , u ) ] < k B 3 for any A,(teT; C,k are constants. This represen-
tation is the direct consequence of the proposition.

We note that

From (44) it follows that if fA e Lev is an eigen-function of the operator HA

with eigenvalue w^O, then this function fA e L™, i.e., f T , f A ( A . ) t/A = 0.
From (44) it also follows that the constant in the kernel K A ( L , u ) does not
vary the action of the operator HA. Hence by (43) we can rewrite the func-
tion Kn(k,n) as:

where |qp(„()>.,n)\ < C/?3, C is a constant.
We consider further the operator

with the kernel

It is easy to see that the operator H(b) has the unique point of the discrete
spectrum:

which is outside of the continuous spectrum of H(b) (or Hn):



APPENDIX

A.1. The Proof of Lemma 8

For simplicity we consider the one-dimensional case: d=1. Let f ( x ) ,
g(x) be functions from J, where x = {xke T, keZ1} is a configuration of
the field. Then
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Here we denote by ,Mz ={n = (n(k)), keZ r(n) = z} the set of multi-
indices with charge z, z e Z; C'n are constants such that

and

To bound dr-s we have to obtain more detailed representation for the
functions hr(x). Using ( 1 1 ) and (18) we can write:

We put f ( x ) = hr(x), g(x) = hs(x), then

with



Here K1, K2, C<a1 <a2 are constants.
Lemma 8 is proved.
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where D is a constant, and d { r , s u p p n } is the length of a minimal connected
set of bonds such that the set containes the point r and all points of supp n.
Then for r + s we have

By estimates (47) and (48) we have for every we.,u2:



where Q: L2->L>2, b>a2 is a constant, and a2 is the same constant as
in the estimates (26), (28), (29). The equation (23) on the operator S2

implies that

Then using the representation
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with b>a.2, and

where J* : 3. -> <$. is a mapping in the space A
We shall prove that the mapping F is a contraction on a ball 6q a £;

To do this we have to get estimates for every terms in the equation (49).
From (29) we obtain

A.2. The Proof of Lemma 9

The proof is based on the estimate (18). We denote by 3. the space of
bounded operators from L2 to L>2 with norm

where the function gl = g r , s is defined in the Corollary to Lemma 8, we
have

Hence
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Thus

Similar reasoning shows that

Here C1, kj, j= 1, 2, 3 are constants.
From the above estimates it is easy to see that for small enough B the

mapping 3F is a contraction on a ball 3$q, where ^D<q<(^ + E)D,
e = e ( J ) is small. Hence there exists the unique solution S2 of the equation
(49) with \\\S2\\\<q.

Lemma 9 is proved.

A.3. The Proof of the Proposition

We shall use in our proof the expression (33) for the kernel
K ( r , s , r ' , s ' ) .
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with \\R\\ =O(? 3 ) . From (11) and (50) we get the following representation
for hr(x), reZ:

366

1. First we consider the case when |r — s| = 1, and suppose that r < s.
Using (46) we shall compute the function

and then we shall separate the function g r , s ( x ) e L2 from g r , s ( x ) e L > 2 . For
this purpose we need a detailed representation for the basis vectors hr(x)
in the one-particle invariant subspace.

Using the equation (8) for the operator S+ we can decompose S+ in
the series

Here aj, j=l,...,6 are constants, a 4 = — 1 / 8 ; \r — r'\ = \r — r*\ = \. The
analogous representation is valid for the basis vectors h ( - ) = hr in the
space 2f\.



where we denote by O(P2, n) a linear combination of the vectors en(x) of
the form:
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If we insert this expression in (46) we obtain

Thus

with r' = r—\ <r<s<s' = s + 1.
Using the expression for the operator S2 which is similar to the series

(50) we have

Therefore

with r' = r — l<r<s<s'=s+l. Finally by (33) we get the representations
(39) and (41).

The function K°(r, .v; r', s') can be investigated in a similar way.



2. The estimate (34) implies that the study of the functions
K(r,s;r',s') and K°(r, .v; r',.?'), when |r-.s-|<10, suffices to prove (42).
However repeating previous reasoning in the case, when \r — s\^2, we
obtain that estimate (42) is valid for any r, s such that \r — s\ ^2.

The proposition is proved.
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